<table>
<thead>
<tr>
<th>Time</th>
<th>July 23 (Sun)</th>
<th>July 24 (Mon)</th>
<th>July 25 (Tue)</th>
<th>July 26 (Wed)</th>
<th>July 27 (Thu)</th>
<th>July 28 (Fri)</th>
<th>July 29 (Sat)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:50</td>
<td>Arrival</td>
<td>9:30</td>
<td>【#611】 Cameras and Image Sensors (Kagami)</td>
<td>【#611】 Robotics as Systems Integration, an overview I (Kosuge)</td>
<td>【#611】 Robotics for Human Assistance (Hirata)</td>
<td>【#611】 Molecular Robotics I (Murata)</td>
<td>Field Trip</td>
</tr>
<tr>
<td>10:20</td>
<td>Hotel Check-In (14:00-)</td>
<td>【CH2F】 Opening Ceremony</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:30</td>
<td></td>
<td>【CH2F】 Space Robotics I (Yoshida)</td>
<td>【#611】 Visual Servo and its Application in Robotics (Hashimoto)</td>
<td>【#611】 Robotics as Systems Integration, an overview II (Kosuge)</td>
<td>【#611】 Neuro-Robotics (Hayashibe)</td>
<td>【#611】 Molecular Robotics II (Murata)</td>
<td></td>
</tr>
<tr>
<td>12:00</td>
<td></td>
<td>Lunch</td>
<td>Lunch</td>
<td>Lunch</td>
<td>Lunch</td>
<td>Lunch</td>
<td></td>
</tr>
<tr>
<td>12:00</td>
<td></td>
<td></td>
<td>Lunch</td>
<td>Lunch</td>
<td>Laboratory Hands-On Activity @ each lab.</td>
<td>Laboratory Hands-On Activity @ each lab.</td>
<td></td>
</tr>
<tr>
<td>12:00</td>
<td>Lunch</td>
<td></td>
<td></td>
<td>Lunch</td>
<td>Laboratory Hands-On Activity @ each lab.</td>
<td>Laboratory Hands-On Activity @ each lab.</td>
<td></td>
</tr>
<tr>
<td>13:00</td>
<td></td>
<td></td>
<td>Open Campus</td>
<td>Open Campus</td>
<td>Laboratory Hands-On Activity @ each lab.</td>
<td>Laboratory Hands-On Activity @ each lab.</td>
<td></td>
</tr>
<tr>
<td>13:45</td>
<td></td>
<td></td>
<td>Lab Visit and Japanese Culture 【AMH】</td>
<td>Lab Visit and Japanese Culture 【AMH】</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14:30</td>
<td></td>
<td></td>
<td>Open Campus</td>
<td>Open Campus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14:40</td>
<td>Laboratory Hands-On Activity @ each lab.</td>
<td>Open Campus</td>
<td>Laboratory Hands-On Activity @ each lab.</td>
<td>Laboratory Hands-On Activity @ each lab.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16:10</td>
<td>Laboratory Hands-On Activity @ each lab.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Week 2

CH: Center Hall (C01)
AMH: Aoba Memorial Hall (C03)

<table>
<thead>
<tr>
<th>July 30 (Sun)</th>
<th>July 31 (Mon)</th>
<th>August 1 (Tue)</th>
<th>August 2 (Wed)</th>
<th>August 3 (Thu)</th>
<th>August 4 (Fri)</th>
<th>August 5 (Sat)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hotel Check-Out</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hands-On Activity (Preparation for Final Presentation)</td>
<td>(-11:00)</td>
</tr>
<tr>
<td>10:20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:00</td>
<td></td>
<td>Lunch</td>
<td>Lunch</td>
<td>Lunch</td>
<td>Lunch</td>
<td></td>
</tr>
<tr>
<td>12:00-13:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13:00</td>
<td></td>
<td>Laboratory Hands-On Activity @ each lab.</td>
<td>13:00-16:30 Final Presentation</td>
</tr>
<tr>
<td>14:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14:40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16:10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16:30</td>
<td>13:30-16:30</td>
<td></td>
<td>13:00-16:30</td>
<td>16:30</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bio-inspired Robotics and Robot-inspired Biology (Ishiguro)</td>
<td>Laboratory Hands-On Activity @ each lab.</td>
<td>Final Presentation</td>
<td>Closing Ceremony</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Katahira [CH2F]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Farwell Party</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- :Ceremony, Student Activity
- :Lecture
- :Laboratory
<table>
<thead>
<tr>
<th>Time</th>
<th>Title</th>
<th>Place</th>
<th>Professors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 July 24, Mon 10:30-12:00</td>
<td>Space Robotics I</td>
<td>Center Hall 2F Conf. Room</td>
<td>Prof. Kazuya Yoshida</td>
</tr>
<tr>
<td>2 July 25, Tue 8:50-10:20</td>
<td>Cameras and Image Sensors</td>
<td>Room #611</td>
<td>Assoc. Prof. Shingo Kagami</td>
</tr>
<tr>
<td>3 July 25, Tue 10:30-12:00</td>
<td>Visual Servo and Its Application in Robotics</td>
<td>Room #611</td>
<td>Prof. Koichi Hashimoto</td>
</tr>
<tr>
<td>4 July 26, Wed 8:50-10:20</td>
<td>Robotics as Systems Integration, an Overview I</td>
<td>Room #611</td>
<td>Prof. Kazuhiro Kosuge</td>
</tr>
<tr>
<td>5 July 26, Wed 10:30-12:00</td>
<td>Robotics as Systems Integration, an Overview II</td>
<td>Room #611</td>
<td>Prof. Kazuhiro Kosuge</td>
</tr>
<tr>
<td>6 July 27, Thu 8:50-10:20</td>
<td>Robotics for Human Assistance I</td>
<td>Room #611</td>
<td>Prof. Yasuhisa Hirata</td>
</tr>
<tr>
<td>7 July 27, Thu 10:30-12:00</td>
<td>Neuro-Robotics</td>
<td>Room #611</td>
<td>Prof. Mitsuhiro Hayashibe</td>
</tr>
<tr>
<td>8 July 28, Fri 8:50-10:20</td>
<td>Molecular Robotics I</td>
<td>Room #611</td>
<td>Prof. Satoshi. Murata</td>
</tr>
<tr>
<td>9 July 28, Fri 10:30-12:00</td>
<td>Molecular Robotics II</td>
<td>Room #611</td>
<td>Prof. Satoshi. Murata</td>
</tr>
<tr>
<td>10 July 31, Mon 8:50-10:20</td>
<td>Space Robotics II</td>
<td>Room #611</td>
<td>Prof. Kazuya Yoshida</td>
</tr>
<tr>
<td>11 July 31, Mon 10:30-12:00</td>
<td>Space Robotics III</td>
<td>Room #611</td>
<td>Prof. Kazuya Yoshida</td>
</tr>
<tr>
<td>12 August 1, Tue 8:50-10:20</td>
<td>Computer Vision I</td>
<td>Room #611</td>
<td>Prof. Takayuki Okatani</td>
</tr>
<tr>
<td>13 August 1, Tue 10:30-12:00</td>
<td>Computer Vision II</td>
<td>Room #611</td>
<td>Prof. Takayuki Okatani</td>
</tr>
<tr>
<td>14 August 2, Wed 8:50-10:20</td>
<td>Haptic Interfaces</td>
<td>Room #611</td>
<td>Assoc. Prof. Masashi Konyo</td>
</tr>
<tr>
<td>15 August 2, Wed 10:30-12:00</td>
<td>Disaster Robotics</td>
<td>Room #611</td>
<td>Prof. Satoshi Tadokoro</td>
</tr>
<tr>
<td>16 August 3, Thu 8:50-10:20</td>
<td>Medical and Health Care Applications of Microsystem Technologies</td>
<td>Room #611</td>
<td>Prof. Yoichi Haga</td>
</tr>
<tr>
<td>17 August 3, Thu 10:30-12:00</td>
<td>Field Robotics</td>
<td>Room #611</td>
<td>Assoc. Prof. Keiji Nagatani</td>
</tr>
<tr>
<td>18 August 3, Thu 13:30-14:00</td>
<td>Bio-inspired Robotics and Robot-inspired Biology</td>
<td>Katahira Campus</td>
<td>Prof. Akio Ishiguro</td>
</tr>
</tbody>
</table>
Using microfabrication technologies called micromachining and nanotechnology, small medical devices with several functions for use in the human body have been developed. Several new technologies, for example, MEMS (Micro Electro Mechanical Systems) technologies, ultra-precision machining, laser machining are used for fabrication. Minimally invasive examinations and therapies with endoscopes and catheters are already widely performed, and new more precise examinations and diagnoses which have been impossible to date can now be realized by installing microsensors in these medical devices. Furthermore, more precise and safe surgical treatment can be realized by installing microactuators (shape memory alloy, piezoelectric elements, etc.) in the minimally invasive therapeutic devices. Thin, soft and small wearable health care devices which is mounted on human body surface enable new useful measurement item in daily life, for example fatigue and stress level.

Research Interests
(1) Active Catheter and Endoscope Using Shape Memory Alloy Actuators
(2) Ultra Miniature Fiber-Optic Pressure Sensor
(3) Intravascular Forward-looking Ultrasonic Probe
(4) Wearable-type Healthcare Devices

Honors and Awards
2014 Best Paper Award (Engineering), Japan Society of Computer Aided Surgery
2012 IEEJ Technical Development Award, The Institute of Electrical Engineers of Japan
2007 Best Paper Award, Japanese Society for Medical and Biological Engineering
2004 Best Presentation Award, Welfare Engineering Symposium, The Japan Society of Mechanical Engineers
2004 Best Paper Award, Japan Society of Computer Aided Surgery
2002 JSAO-Grant, Japanese Society for Artificial Organs
“Visual Servo and Its Application in Robotics”

Abstract
Visual servo is a feedback control framework useful for robot motion generation. It can also be used for robust image processing. Using with high-speed cameras image processing algorithms with feedback structure presents outstanding robustness. A parallel processing algorithm suitable for GPU architecture will be introduced. In this lecture, many visual servo applications of robot manipulation systems including robotic manufacturing, visual inspection and microscope robots are presented.

Research Interests
(1) Theoretical issues in visual servo
(2) High-speed vision systems and high-speed image processing algorithms
(3) GPU programming
(4) Visual servo microscope
(5) Optogenetic motion control of micro bio-systems
(6) Fluorescent 3D measurement of neural activity from freely moving animals.

Honors and Awards
2013 Vice-Dean of GSIS
2013 Fellow, SICE
2011 Assistant for University President
2011 Best Contribution Award, Society of Instrument and Control Engineers (SICE)
2010 Best Paper Award, Journal of Institute of Systems, Control and Information Engineering
2009 Best Paper, IEEE Int. Conf. Mechatronics and Automation
2006 Best Biomimetics Paper, IEEE Int. Conf. Robotics and Biomimetics
2005 Best Mechatronics Paper, IEEE Int. Conf. Mechatronics and Information Technology
1994 Young Investigator Excellence Award, Robotics Society of Japan
“Neuro-Robotics”

Abstract
The current era is recently referred as a century of robotics and AI. However, there are still a lot of things we need to deeply learn from advanced and robust human motor control and sensory functions which humans only own. Under the known rule and predefined environment, robot and AI can outperform the capability of human thanks to its computation and memory performance. But it is obvious human can revenge once the unknown or new rule is applied or the new dynamics environment is introduced.

Robotics is effective as a computational tool to understand human motor learning mechanism. Then, it can be used to understand human sensory motor system, and it can be also used as an augmenting technology for neuro-rehabilitation. Neuroscience is useful to provide new insights to improve the current robotics function. In our lab, we study on neuroscience for robotics and robotics for neuroscience as “Neuro-Robotics”. In this lecture, relevant topics regarding Neuro-Robotics and Neuroprosthetics will be introduced.

[reference article]

Research Interests
Human motor control
Learning mechanism
Neuroprosthetics
Neurorehabilitation

Honors and Awards
2016 Swiss National Science Foundation fellowship for Short Visits. (EPFL)
2015 Habilitation degree (Professor qualification) at University of Montpellier, France.
2008 Academic Tenure with INRIA (Institut National de Recherche en Informatique et en Automatique), France.
2005 CAS Young Investigator Award, Gold Prize from Hitachi Medical Systems
2003 MMVR (Medicine Meets Virtual Reality) Best Poster Presentation Award
“Robotics for Human Assistance”

Abstract
Most of robots have been used as industrial robots in factories to replace humans doing tasks, which humans do not want to do or could not do, and have been isolated from humans. Recently, however, we expect to utilize robot systems not only the industrial fields but also the fields such as home, office and hospital in cooperation with human. For realizing the physical supports for human being by using the robot systems, we have to consider two main points: achieving high performance and user safety. In this lecture, the human-robot cooperation systems for augmenting the human performance will be given. In addition, the passive robotics concept, which can realize the high-safety robot, will be introduced, and the motion control methods of several passive robots will be lectured.

Research Interests
Human-Robot Cooperation
Assistive Robot
Passive Robot
Multiple Robots Coordination

Honors and Awards
Young Investigator Excellence Award, Robotics Society of Japan in 2001
Best Paper in Robotics Award of ROBIO in 2004
JSME Award for best paper, Japan Society of Mechanical Engineers in 2005
Best Paper Award, Robotics Society of Japan in 2005
Original Paper Award, FANUC FA and Robot Foundation in 2006
Young Scientists’ Prize, The Commendation for Science and Technology, Minister of Education, Culture, Sports, Science and Technology in 2014
Akio Ishiguro, Professor, Research Institute of Electrical Communication

“Bio-inspired Robotics and Robot-inspired Biology”

Abstract
Animals are able to exhibit surprisingly adaptive and resilient behavior in real time under real world constraints. Such movements are achieved via spatiotemporal coordination of a large number of bodily degrees of freedom in response to the environment. Clarifying the control principle underlying this remarkable ability of animals allow us to understand biological systems more deeply as well as to construct truly adaptive robot that could not be realized solely by the conventional robotics technology.

In the lecture of “Bio-inspired Robotics and Robot-inspired Biology,” our current activities are introduced. We also show demonstration of some of our robots developed in our lab.

Research Interests
(1) Bio-inspired robotics
(2) Robotics-inspired biology
(3) Synthetic paleontology

Honors and Awards
2016 WIRED Audi Innovation Award
2014 CLAWAR Association Best Technical Paper Award
2012 IEEE/RSJ International Conference on Intelligent Robots and Systems JCTF Novel Technology Paper Award for Amusement Culture Finalist
2012 The International Conference on Biomimetic & Biohybrid Systems Best Paper Award
2011 IEEE/RSJ International Conference on Intelligent Robots and Systems NTF Award Finalist for Entertainment Robots and Systems
2009 IEEE/RSJ International Conference on Intelligent Robots and Systems Best Paper Award Nomination Finalist
2008 Ig Nobel Prize (Cognitive Science Prize)
2004 IEEE/RSJ International Conference on Intelligent Robots and Systems Best Paper Award
2003 IEEE/RSJ International Conference on Intelligent Robots and Systems Best Paper Award Nomination Finalist
“Cameras and Image Sensors”

Abstract
In order to investigate and develop advanced technologies for robot vision, image-based control and vision-based intelligent systems, it is important to understand how cameras acquire images, and how obtained images are affected by sensor structures and dynamic aspects of sensor operations. This lecture describes the principles, structures and operations of CCD/CMOS image sensors and camera systems. It also mentions related advanced topics such as high-speed imaging and exposure control as well as their applications.

Research Interests
(1) High-speed vision systems and real-time vision processing
(2) Vision application in robotics and human interfaces
(3) Real-time sensory information processing

Honors and Awards
2011 Research Incentive Award, M. Ishida Foundation
2010 Frontier Paper Award, Meeting on Image Recognition and Understanding
2009 Best Conference Paper Award, IEEE International Conference on Mechatronics and Automation
2004 Young Investigator Excellence Award, Robotics Society of Japan
2000 Incentive Award, IEEE Solid-State Circuits Society Japan Chapter
“Haptic Interfaces”

Abstract
Haptics is all things related to our sense of touch. Creating haptic feedback for human interfaces contributes to enhancing our communication and physical capabilities. In this lecture, the recent topics and the state-of-art on haptic interfaces are introduced, especially from the aspect of cutaneous sensations. Advanced vibration feedback technologies, which produce force-like sensations, such as friction, inertia, and viscosity sensations for mobile information devices and motion support system are also introduced.

Research Interests
Haptics, Tactile Display, Tactile Sensor, New Actuators, Virtual Reality

Honors and Awards
Best Paper Award, Journal of Robotics and Mechatronics, 2010
Best Paper Award, Transaction of Virtual Reality Society of Japan, 2002 and 2007
Best Poster Award of IEEE World Haptics Conference 2007 and 2013
Best Hands on Demo Award at the EuroHaptics 2008
Best Demo Award of IEEE Haptics Symposium 2014
“Robotics as Systems Integration, an Overview I, II”

Abstract
First, two issues for robot systems integration are discussed. One is related to how to integrated devices
and unit technologies into robot systems and the other is related to how the robotic systems are integrated
into society. Both issues are very important for bringing the robotics into the real world. Then, the systems
integration issues are discussed using examples of robots and RT systems having physical interactions
with humans which include robot helpers, passive robotic systems, and walking helpers. The dance partner
robot, PBDR, is also discussed as a research platform for the future robot and RT systems for quality of
life.

Research Interests
Robotics
New Robots Design
Intelligent Systems Design
Control Engineering

Honors and Awards
Director & Delegate, Division X, IEEE (2015-2016)
Member, Board of Directors, IEEE (2015-2016)
President, IEEE Robotics and Automation Society (2010-2011)
IEEE Fellow
RSJ Fellow
JSME Fellow
SICE Fellow
JSAE Fellow
JSME Awards for the best papers, Japan Society of Mechanical Engineers in 2002 and 2005
RSJ Award for the best papers from the Robotics Society of Japan in 2005
Original Paper Award, FANUC FA and Robot Foundation in 2004 and 2006
Best Paper Award of IROS’97
“Molecular Robotics I, II”

Abstract
The concept of nanometer scale mechanical systems first appeared in the famous lecture “There is plenty of room at the bottom” by Feynman (1959). Inspired by this idea, Drexler claimed that it is possible to build innovative artificial molecular machines such as gears and bearings by using a universal assembler that assembles atoms. Although his idea was met with much skepticism, it led to the establishment of a research field called molecular nanotechnology. In this lecture, DNA nanotechnology which is one of those emerging molecular nanotechnologies will be depicted. By the DNA nanotechnology, it becomes possible to make various mechanical and/or information processing devices out of DNA molecules. Accordingly, current efforts focus on creation of nanoscale molecular robots. Some topics on the frontline research will be reported.

Research Interests
(1) DNA Nanoengineering and its application to create Molecular Robots
(2) Distributed Autonomous Systems
(3) Sciences on Form

Honors and Awards
1992 IEEE Industrial Electronics Society, Outstanding Transaction Paper Award
1996 Outstanding Paper Award J.SICE 1996
2004 ROBOMEC Award, JSME
2007 Good Design Award, METI, Development of M-TRAN III (as a chief designer)
“Field Robotics”

Abstract
Field robots are expected to work in irregular outdoor terrains and hostile environments, instead of human. Therefore, the field robotics research includes the following topics: high-performance mobility, environment mapping and localization, path planning and navigation, and supervisory teleoperation. In the lecture of “Field Robotics”, some technical issues relating to the field robotics will be introduced, and mobility mechanism topics will be discussed in detail.

Research Interests
(1) Locomotion mechanism
(2) Teleoperation
(3) Mapping and path planning for mobile robots on rough terrain
(4) Autonomous navigation

Honors and Awards
“Computer Vision I, II”

Abstract
It is said that more than eighty percent of sensory information humans receive is through vision. Computer vision is a research area that studies how to make a computer perform the high-level visual information processing that humans do. Its application covers a wide range including robot vision, video/film production, medical applications, computational photography etc. This lecture describes two key problems in computer vision, 3D reconstruction from multi-view images and visual object recognition, from their theoretical bases to practical applications.

Research Interests
(1) Statistical methods and optimization in computer vision
(2) Multi-view geometry and its applications, e.g., large-scale city modeling
(3) Image-based recognition of objects, materials, and others that humans can visually recognize.
Abstract
The Great Eastern Japan Earthquake was the first disaster where many robotic systems were used for disaster response and recovery. It is predicted that robotic systems become essential solutions in the near future. In this lecture, special topics related to rescue robots and systems will be introduced.

Research Interests
Rescue robotics, Actuators, Virtual Reality

Honors and Awards
President, IEEE Robotics and Automation Society 2016-2017
President, International Rescue System Institute
Program Manager, Japan Cabinet Office ImPACT Tough Robotics Challenge Program
IEEE Fellow, JSME Fellow, RSJ Fellow, SICE Fellow
RSJ Best Achievement Award
JSME RMD Best Achievement Award
SICE SI Best Achievement Award
RSJ Social Contribution Award
METI Robot of This Year
FDMA Commissioner Award
“Space Robotics I, II, III”

Abstract
Space robots have two distinct application fields: One is orbits around the earth. Manipulator arms mounted on Space Shuttle or International Space Station are in this category and dynamics and control in free-floating environment are of interest. The other is the surface of the moon or planets. Locomotion and remote/autonomous navigation are of interest. After a general introduction of current achievements in space robotics, specific focuses are placed on Hayabusa, a Japanese asteroid probe and the sensing and navigation of a wheeled mobile robot (rover) for lunar/planetary exploration.

In the lecture of “Micro-satellites and Micro-rovers,” our current activities on micro-satellites and microrovers are introduced. As for the micro-satellites, a university-made “RISING-2” satellite was launched on May 24, 2014 and it is now making top-of-the-world level achievements. As for the microrovers, lunar rovers for the GLXP challenge are elaborated.

[reference article]

Research Interests
(1) Dynamics and control of space robotic systems ranging from orbital free-flying robots to planetary exploration rovers
(2) Development of university-based micro-satellites
(3) Terrestrial applications of space technology, such as robotics remote exploration for search and rescue missions.

Honors and Awards
2015 Terrestrial Milestone Prize in Google Lunar XPRIZE (for team HAKUTO)
2014 Commendation for Science and Technology by the Minister of Education, Culture, Sports, Science and Technology, Japan
2008 Best Paper Award in IEEE 2008 International Conference on Mechatronics and Automation
2001 Best Conference Paper Award in IEEE 2001 International Conference on Robotics and Automation
1998-Now Visiting Faculty of International Space University
JSME Fellow, JSASS Fellow, RSJ Fellow